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ABSTRACT. A closed subspace M in a Banach space X is called U-proximinal 
if it satisfies: (1 + P)S n (S + M) c S + e(pXS n M), for some positive 
valued function e(p), p > 0, and e(p) -*0 as p -*0, where S is the closed 
unit ball of X. One of the important properties of this class of subspaces is 
that the metric projections are continuous. We show that many interesting 
subspaces are U-proximinal, for example, the subspaces with the 2-ball 
property (semi M-ideals) and certain subspaces of compact operators in the 
spaces of bounded linear operators. 

1. Introduction. We call a closed subspace M of a real Banach space X an 
M-ideal if the annihilator M ' of M is an L-summand in X*. This notion was 
formulated and studied by Alfsen and Effros [1]. It was proved that if M is an 
M-ideal, then M is a proximinal subspace of X [1], [5]. In [4], Hennefeld 
showed that the space of compact operators on 1P (or c0), 1 < p < 0o, is an 
M-ideal in the space of bounded linear operators on 1P (or c0 respectively). 
This theorem is also true for operators from 1P into lq, 1 < p < q < oo [11]. 
(It is well known that if 1 < q < p < so, then every bounded linear operator 
from 1P into lq is compact.) M-ideal theory provides a convenient tool to 
study the approximation of operators by the space of compact operators and 
has been investigated by many authors [3], [4], [5], [9], [11], [15], [16]. 
However, in some cases, the class of M-ideals appears to be too restricted; for 
example, the space of compact operators on 1 is not an M-ideal in the space 
of bounded linear operators on 1 [16]. It is our attempt to consider another 
sufficient condition for proximity which preserves certain important 
properties of M-ideals and also includes some other interesting classes of 
proximinal subspaces. 

Motivated by a lemma of Holmes in [5], we call a closed subspace M of a 
Banach space X U-proximinal if there exists a positive function e(p), p > 0, 
with e(p) -*0 as p -*0 and satisfies 

(1 + p)S n (S + M) C S + e(p)(S n M), p > 0, 
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where S denotes the closed unit ball of X. Examples of U-proximinal 
subspaces are: 

(i) X is uniformly convex and M is a closed subspace of X; 
(ii) X = B(K), the space of bounded functions on a topological space K 

and M = C (K), the space of bounded continuous functions on K; 
(iii) M is a semi M-ideal or semi L-summand in a Banach space X; 
(iv) X = L??(Q, L'), the space of bounded Bochner measurable functions 

from a a-finite measure space Q into L' and M is the subspace of f in X such 
that f(Q) is weakly precompact. In particular, if we let L(E, F) (K(E, F)) 
denote the space of bounded linear operators (compact operators, respec- 
tively), then K(L'(Q), 1 ') is proximinal in L(L1(Q), 1'). 

Our paper is divided into six sections. In ?2, we define some basic 
terminologies and give several reformulations of the definition of U- 
proximity. The metric projection from X into a proximinal subspace M is the 
map P which sends x E X to the set of best approximations from M to x. 
The study of the continuity of metric projections is an important component 
of the theory of best approximation. In ?3, we show that if M is U- 
proximinal, then the metric projection P is continuous (with respect to the 
Hausdorff metric in the range). We also give a condition for P to be Lipschitz 
continuous. In ??4-6, we show that the examples listed above are in fact 
U-proximinal subspaces. 

ACKNOWLEDGEMENT. The author is indebted to Professor T. A. Metzger for 
some suggestions in the first draft. He would also like to thank the referee for 
bringing his attention to several recent publications in this subject. 

2. Definitions and preliminaries. Let X be a real Banach space, let Sr(X) (or 
Sr) denote the closed ball of radius r centered at 0; SI(X) = S (X) (SI = S). 
If M is a closed subspace of X, then for x E X, we denote the subspace 
generated by M and x by <M, x>, and denote Sr(KM, x>) by Sr[x]. 

Let F(X) be a family of nonempty bounded closed subsets of X. For any 
A, B E F(X), we define 

dH(A, B) = inf{r: A C B + Sr and B C A + Sr }. 

Then dH is a metric on F(X) and is called the Hausdorff metric. 
For x E X and for any subset A in X, we define another distance function 

d(x, A) = inf{IIx - zIl: z E A). A pointy in a closed subspace M of X is 
called a best approximation from M to x if IIx - yII = d (x, M). M is called a 
proximinal subspace of X if every x E X has a best approximation from M. 
Propositions 2.2 and 2.3 will give the motivation of a simple sufficient 
condition for M to be a proximinal subspace. 
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LEMMA 2.1. Let g be a concave function defined on [0, 1] with g(O) > 0 and 
g(l) = 0. Let h be a function defined on [0, a], a > 1, with h(x) = ag(x/a), 
x E [0, a]. Then h(l) > h(x) - g(x) for 0 < x < 1. 

PROOF. Note that the derivatives h'(x), g'(x) exist and decrease almost 
everywhere. Hence 

h'(x) - g'(x) = g'( x ) - g'(x) > 0 a.e. 

and 

h(l) = h(l) -g(l) > h(x) -g(x), O < x < 1.0 
Let X be a two dimensional normed linear space. For p > 0, let L be a line 

which is tangent to S at w and cuts the sphere {z: lIzIl = 1 + p} at x andy. 
Let (x': y') be any open line segment which is parallel to L, with IIx'll = 1 + 
p, Iy'lI = 1 and does not intersect S. Lemma 2.1 implies that IIx' - y'lj < 
max{llx - wll, IlY - wl}. 

Let M be a proximinal subspace in X, let x E X \ M and let Xl = <M, x>. 
Letf E Xl be such thatf'(0) = M, jIfjI = 1 and define 

a(x, p) = dH((l + p)S[x] n f (1), S[x] n f'()), p > O. 

It follows from simple geometry that for each x E X \ M, 

a (x, p) - a(x, p') < 211 + P + p'l l - p' f > ? 

Hence a(x, ) is continuous on R+. 

PROPOSITION 2.2. Let M be a proximinal subspace of a Banach space X and 
let a(x, p) be defined as above. Then 

a(x, p) = inf{r > 0: (1 + p)S n (S[x] + M) 5 S + rS(M)}. 

PROOF. Without loss of generality, we may assume that X = <M, x>. It is 
clear from the definition of a(x, p) that 

a(x, p) < inf{r > 0: (1 + p)S n (S + M) 5 S + rS(M)}. 

To prove the reverse inequality, let 0 < e < 1 and let y E (1 + p)S n (S + 
M). We will consider the case y a M first. Assume f(y) > 0 (the case 
f(y) < 0 is similar), and let yl = ty E f'(l) for some t > 0. There exists 

wI E S n f (1) such that 

IIy1 - wlll < d(yl, S n f'- (1)) + 

If y 6 1 + p, we define xl = y , otherwise we define xl to be the point on 
the line segment of (y, : wl) with 1Ix1II = I + p. In either case, it can be 
shown that IIxI - w1 I I a(x, p) + e. By the remark before the proposition, 
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we can choose a z ef'(f(y)) n {w: llwil = 1) such that Iy - zll < 
a(x, p) + E. Hence 

y = z + (y-z) E S + (a(x, p) + e)S(M). (1) 

If y e M, we can choosey' E (1 + p)S \ M with Iy' - yl < e/2(l + p) and 
z' E f '(f(y')) n S satisfies (1). Let 

z = llz' - (Y' - Y)I -(z (y' -y)). 

Then z" is in M since 

f(z' - (Y' - Y)) = f(z') - f(y') = 0. 

That 
IIY - Z"ii < e + (1 + e)(a(x, p) + E) = 

implies that 
y = Z" + (y-z") E S + 3S(M). 

Since this is also true for the y a M as in (1) and since e is arbitrary, we 
conclude that 

a(x, p) > inf{r > 0: (I + p)S n (s + M) C-S + rS(M)}. cI 
The following proposition is the foundation of this paper; the proof is 

similar to [5, Lemma 2]. 

PROPOSITION 2.3. Let M be a closed subspace of X and let x E X \ M. 

Suppose there exists a function E: R+ R+ (depending on x) such that E(p) -*0 
as p -* 0 and 

(1 +p)S n (S[x] + M) C S+ E(p)S(M), p>0. 

Then x has a best approximation from M. 
Furthermore, if I1xIi I 1 + po and if inf {IIx - z1: z E M} < 1. Then given 

any r > e(po), there exists a best approximation zo in M such that lizoll < r. 

PROOF. Without loss of generality, assume that lxII = 1 + po and inf{ lIx - 
zil: z E M} = 1. We claim that x E S[x] + M. Indeed, a sequence (Zn) in 
M can be chosen such that ix - z,,/Il - 1. Let 

Xn = IIX - Zn'1(X Zn) + Zn, 

then the sequence {xn) is contained in S[x] + M and xn -> x. 
Choose a sequence of positive numbers {pn) such that pn ,? 0 and 

> 4"=oe(pn) < r where r > e(po). By hypothesis there exists z1 e e(p0)S(M) 
with llx -zlll < 1 + p,. Note that x - z1 is also in S[x] + M, the same 
argument yields a Z2 in e(p1)S(M) with lix - z1 - z211 S 1 + P2. Inductively, 
we can find a sequence {zn) such that zn E e(pn_1)S(M) and lix - n1ZkII 

S 1 + P.n Let zo = Xn=lzn, then lizoll < I'=Oe(pn) < r and lix-z0ii = 1. 
This completes the proof. [O 
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PROPOSITION 2.4. Let M be a closed subspace in X and let x E X \ M. Then 
the following conditions are equivalent: 

(i) there exists an e: R- R+ such that e(p) -O0 as p O-0 and 

(1 + p)s n (s[x] + M) C S + e(p)S(M), p > 0. 

(ii) there exists an c': R+ -> R+ such that e'(p) -O 0 as p -O0 and 

(I + p)S n (S[X] + M) C- S+ e'(p)S(M), P > ? 
(iii) there exists an e: R+-> R+ such that e is increasing, continuous, e(p) ->0 

as p -* 0 and 

(I +p)S n(S[x ] +M) gS + E(p)S(M), P> 

Moreover, if one of the three conditions holds, the function a(x, p) defined in 
Proposition 2.2 converges to zero as p -O0. 

PROOF. (i) =X (ii). Let y E (1 + P)S n (S [x] + M). By Proposition 2.3 if 
r = 2e(p), then there exists a z E M such that Ily - zll < 1 and llzjl < 2e(p). 
Let e'(p) = 2e(p), then y E S + e'(p)S (M) and (ii) follows. (ii) =* (i) is clear. 
To prove (ii) =X (iii), we can take e(p) = a(x, p) + p, then e is an increasing, 
continuous function. Proposition 2.2 implies that a(x, p) < e(p). Hence e(p) 
-0 as p -O0. That (iii) =X (ii) is obvious. [] 

DEFINITION 2.5. Let M be a closed subspace of a Banach space X, we say that 
M is locally U-proximinal if there exists a function e: (X \ M) X R+ R+ 

such that for each fixed x, e(x, *) is continuous, increasing on p, e(x, p) -* 0 as 
p -*0 and 

(1 + p)S n (S[x] + M) C S + e(x, p)S(M), x E M, p > O. 

M is called U-proximinal if the function e can be chosen independent of x and 

(1 + p)S n (S + M) 5 S + e(p)S(M). 
It follows from Proposition 2.3 that locally U-proximinal and U-proximinal 

subspaces are proximinal. 

3. Metric projections. Let M be a proximinal subspace of X, for each 

x E X, we define P (x) to be the set of best approximations from M to x. 

We call the map P from X into F(M), the family of bounded closed subsets 

in M, as the metric projection from X into M. 

LEMMA 3.1. Let M be a locally U-proximinal subspace in X. For each 
x E X \ M, let rx = d(x, M). Then 

M n (S(l+p)rx + x) c P(x) + r.E(X, p)S(M), p > 0. 

PROOF. Without loss of generality, we assume that rx = 1. For y E M n 

(S(l+p) + x), it follows that lix - < 1 + p. That 

x - y = (x - z) + (z -y) 
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where z is the best approximation of x, implies that x - y E S + M. Hence 
(x - y) E (1 + p)s n (S + M). 

Since M is locally U-proximinal, x - y = w + v for some w in S and v in 
E(x, p)S (M). Note that (x - w) is in M and, in fact, a best approximation to 
x (for 1 < llx - (x - w)ll = llwll < 1). Hence 

y = (x-w)-v E P(x) + E(x, p)S(M). El 
LEMMA 3.2. Let M be a locally U-proximinal subspace in X. Then for any x, 

y E X \ M with lix -yll < p, 

dH(P(x), P(y)) maxfrxe(x, p , rye y,p 
rx / ( 

PROOF. Since ry < rx + p and 

(Sr 
+ 

Y) C (Srx+2p 
+ 

X), 

it follows that 
PO(y) 5 M nf(Sr+2p + x). 

By Lemma 3.1, we have 

P(y) g P(x) + rxe(x X, )S(M). 

A similar argument yields that 

P(x) 5 P(y) + ryE(y )S(M), 

and the lemma follows easily from these inclusions and the definition of the 
Hausdorff metric on F(M). L1 

THEOREM 3.3. Let M be a locally U-proximinal subspace in X. Suppose for 
each p > 0, E(., p) is an upper semicontinuous function on X \ M. Then P is a 
continuous function from X into F(M). 

PROOF. It is easy to show that P is continuous for x E M. Let x E X \ M, 
for any 8 > 0, there exists an q in (0, 1) such that E(x, q) < a/2. Since E(, ) 
is upper semicontinuous, there exists a p, 0 < p < (71 rx)/4, such that for 
lix -yll < p, E(y,vq) < E(x,q) + a/2. Hence for llx -yll < p, we have 

dH(P(x), P(y)) < max( rxe(x )' rye(X' + )} ) 

XJx 
, 
&1,e 

y 
<2rxmaxE x\ r2J ( rx)) 

< 2rx S. 

This shows that P is continuous at x. [1 
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THEOREM 3.4. Let M be a U-proximinal subspace of X. Then the metric 
projection P: X -> F(M) is continuous. 

PROOF. In this case, we have e(x, p) = e(y, p) = e(p) for any x, y E X \ M. 
Theorem 3.3 implies that P is continuous. [1 

COROLLARY 3.5. Let M be a U-proximinal subspace of X. Then the metric 
projection P admits a continuous selection s: X -. M (i.e., s(x) E P (x)). 

The following also follows easily from Lemma 3.2: 

THEOREM 3.6. Let M be a subspace of X. Suppose there exists a k > 0 such 
that 

(I + p)S n(S + M) C S + kpS(M), p > O. 
Then the metric projection P: X -* F(M) is a Lipschitz continuous function 
with Lipschitz constant not greater than 2k. 

In the next three sections, we will see that many interesting examples will 
satisfy the above inclusion, We remark that the converse of the theorem is not 
true; for example, let M be a closed subspace of a Hilbert space X, then the 
metric projection P: X -4 M is a Lipschitz function but e(p) > vp2 + 2p . We 
also remark that a U-proximinal subspace may not have a uniformly 
continuous metric projection. Examples (certain closed subspaces in some 
uniformly convex spaces) can be found in [7], [14]. In general, a set valued 
function which satisfies the Lipschitz condition does not admit Lipschitz 
selection; it will be interesting to investigate this question for the metric 
projections in Theorem 3.6. 

4. Some examples. In this section, we will give some simple examples of 
locally U-proximinal and U-proximinal subspaces. 

PROPOSITION 4.1. Let M be a finite dimensional subspace in a Banach space 
X. Then M is locally U-proximinal. 

PROOF. Let x E X \ M and assume that X = <M, x>. Let e(x, p) = a(x, p) 
+ p, then it follows from the compactness of the unit ball that e(x, p) O-0 as 
p -O0 and by Proposition 2.2, 

(l+p)S n(S+M)CS+e(x,p)S(M). El 

A Banach space X is called locally uniformly convex if for each x G X with 
xii = 1 and for any 9 > 0, there exists a 8 > 0 such that for anyy E X with 

jJyJJ ? 1 and IIx - yJJ > 7, IIx + yII < 2(1 - 8). X is called uniformly convex 
if the 8 can be chosen independent of x. 

PROPOSITION 4.2. Let X be a locally uniformly convex space. Then every 
proximinal subspace is locally U-proximinal. 
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PROOF. Let M be a proximinal subspace of X and let x E X \ M. Let 
X1 = <M, x> and let f E Xt with f - l(O) = M and IlfjJ = 1. If y E S with 
f(y) = 1 and a(x, p) is defined as in Proposition 2.2, then 

a(x, p) = dH((l + p)S[x] n f'- (1), (y}) 

S diam((l + p) S[ x] n f- I (1)). 

By the locally uniformly convexity of the norm on X1, we can show that the 
last term approaches to zero as p -*0. Let e(x, p) = a(x, p) + p; it follows 
that M is locally U-proximinal. OL 

PROPOSITION 4.3. Let X be a uniformly convex space. Then every closed 
subspace is U-proximinal. 

PROOF. Let ILI denote the length of a line segment L and define 

E(p) =sup{ILI:Lisin(l +p)S\S) +p. 

It is clear that E(p) -O 0 as p O-0 and e(p) > a(x, p) + p where a(x, p) is 
defined as in Proposition 2.2. Hence 

(1 + p)S n (S + M) C S + E(p)S(M) 
and the proof is completed. LOI 

Let K be a topological space, let B(K) be the space of bounded continuous 
functions on K with the supremum norm and let C(K) be the subspace of 
bounded continuous functions in B(K). It is well known that C(K) is a 
proximinal subspace in B(K) [6]. 

PROPOSITION 4.4. Let M be a closed subspace in X = B(K) such that for 
each h E M, h A p, h V (-p), p > 0, are also in M. Then M satisfies 

(I +p)S n (S+ M) C S+ pS(M), p>0. 

Thus M is U-proximinal, and in particular, C (K) is U-proximinal. 

PROOF. For anyf E (1 + p)S n (S + M), we can writef= g + h where 
IIgll < 1 and h E M. Let h' = (h A P) V (- p); then h' E M and Ih'IIl < p. 
Let g' = f - h', we need only show that 11 g'lJ < 1 and hence 

f = g' + h' E S + pS(M). 

If Ih(x)j S p, then I g'(x)j = I g(x)I < 1. If h(x) > p, then three cases arise: 
(i)ifg(x) > 0, then Ig'(x)j =f(x) - p < 1; 
(ii) if g(x) < 0 and f(x) > 0, then 

Ig'(x)I = If(x) - PI 6 (1 + p) - p = 1; 
(iii) if g(x) < 0 and f(x) < 0, then I g(x)l = If(x)I + h(x). This implies 

jf(x)j < 1 - pand 
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Ig'(x)I = If (x) - PI < If(x)I + p ( 1. 
If h(x) < -p, a similar proof shows that I g'(x)l S 1. Hence II g'lI < 1 and 
the proof is completed. O 

5. Semi-M-ideals. A convex subset F in a convex set K is a face of K if 
Xy + (1 - X)z E F,y, z E K,O < X < 1 impliesy, z E F. LetXbe aBanach 
space and let x E S with llxll = 1, we use face(x) to denote the maximal 
proper face in S containing x. 

Let J be a closed subspace of a Banach space X and let 

= {x X: x = Oorface( l% )nJ=0). 

J is called a semi-L-summand if each x E X has a unique decomposition as 
x =y + z with y E J, z E J' and llxII = IIyll + llzll. J is called an L- 
summand if J' is a closed linear subspace of X. For detailed discussion of 
these and the semi-M-ideals, M-ideals, which we will define later, we refer the 
readers to [1], [12]. It follows directly from the definition that 

S = conv((S n J) U (S n J')). 

THEOREM 5.1. Every semi-L-summand J in a Banach space X is U-proxim- 
inal. 

PROOF. Let x E (1 + p)S n (S + J) and llxll = 1 + p; then x = (1 + p)(y 
+ z) with y e S n J and z e S n J'. Note that x E S + J, d(x, J) < 1. 
This implies 11(1 + p)zII < 1. Also note that (1 + p) - p/lllyl > 0 (for 
otherwise, (1 + p)IIyII < p will imply (1 + p)IIyII + (1 + p)IIzIj < 1 + p). Let 
y' = ((1 + p) - p/IIyII)y and write x = (y' + (1 + p)z) + py/lllyll. Then IIy' 
+ (I + p)zII = 1 and hence x E S + p(S n J). El 

Let M be a closed subspace of a Banach space X. M is called a semi-M- 
ideal (M-ideal) if M' = {x* E S*: x*(x) = 0 Vx E M} is a semi-L- 
summand (L-summand, respectively) in X*. M is said to have the n-ball 
property if for any e > 0 and for any n intersecting balls Si(ai, ri) = {x: 
llx - aill < ri} with Si(ai, ri) n M =#0, then nfn= lSj(aj, ri + E) n M =#0. It 
was proved that M is a semi-M-ideal (M-ideal) if and only if M has the 2-ball 
(n-ball, n > 3, respectively) property [1], [12]. In [5], Holmes showed that 
M-ideals are U-proximinal. In the following, we will show that his theorem 
also holds for semi-M-ideals. 

LEMMA 5.2. Let X be a Banach space and let e* E X* with Ile*ii = 1. Let 
F = {x E S: e*(x) = 1). Suppose S = conv(F U - F). Then M = {x: e*(x) 
= 0) satisfies 

(1 + p)S n (S + M) 5 S + pS(M). 



352 KA-SING LAU 

PROOF. Let x E (1 + p)S n (S + M) with lix i = 1 + p. By assumption, 
there exist a, b E (1 + p)F such that x E [a: -b]. Lety = (p/(l + p))((a - 

b)/2). It is easy to show that x = (x - y) + y E S + pS(M). El 

LEMMA 5.3. Let J be a one dimensional semi-L-summand in X. Let e E J 
with lell = 1. Then e is an extreme point of S. Moreover, for any x E S, 
I xII = 1, at least one of the line segments joining x with e and - e is contained 

in the boundary of S. 

PROOF. Suppose e = 2(X + y), x, y E S, x, y 7# e. By the definition of 
semi-L-summand, there exists xl, y, E J', 0 < a, /3 < 1 such that 

x=ax1+(1-a)e, y=fpyl+(1- P)e. 
Hence e = (ax, + 3y1)/(a + /3). This contradicts that J is a semi-L- 
summand. The second part is clear by observing that the unit sphere of the 
subspace generated by e and x is a parallelogram. [L 

THEOREM 5.4. Let M be a semi-M-ideal in X. Then M satisfies 

(1 + p)S n (S + M) C S + pS(M) 
and hence it is a U-proximinal subspace in X. 

PROOF. Let x E (1 + p)S n (S + M) with llxll = 1 + p. Note that <M, x> 
also has the 2-ball property. We may assume, without loss of generality, that 
X = <M, x>. Then J = M' is a one dimensional semi-L-summand in X*. 
Let e* E J n S. Jt follows from Lemma 5.3 and [13, p. 44, Theorem 4.7] that 
for any extreme point x** in S(X**), x**(e*) = 1. Let 

F = {x** CE S(X**): x**(e*) = 1); 

F U - F contains all extreme points of S(X**). By the Krein-Milman 
theorem and the fact that F is w*-compact, 

conv(F U -F) = conv (F U -F) = S(X**). 

Hence Lemma 5.2 applies and 

x E (S(X**) + p(S(x**) n M**)) n x = s(x) + p(S(X) n M)w n S 

c_ s(x) + p(S(X) n M) 
It follows that (1 + p)S n (S + M) C S + pS(M). Proposition 2.4 implies 
M is a U-proximinal subspace with E(p) = 2p. El 

6. Approximation by compact operators. Let E, F be Banach spaces, we 
will use L(E, F) (K(E, F)) to denote the space of bounded linear operators 
(compact operators) from E into F. In [4], [11], it is shown that if E = 1P, 
F = q, 1 < p, q < oo, then K(E, F) is an M-ideal in L(E, F). By Theorem 
5.4, K(E, F) is actually U-proximinal in L(E, F). For the case E = F = 11, 
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Smith and Ward [16] and Mach and Ward [15] showed that K(l', 1') is not 
an M-ideal in L(l 1, /1); however, it is a proximinal subspace. In the following, 
we will consider a more general setting and that K(l , 11) is a U-proximinal 
subspace of L(l 1, 11) comes as a corollary. 

LEMMA 6. 1. Let (W, ':I3, a) be a positive measure space and suppose f, g, h e 
L'(W) satisfy f= g + h, IlflI < I + p, I 6I 1. Then there exist g', h' E 
L'(W) such thatf = g' + h' with I g'II < 1, IIh'Il < 8p and jh'(x)j < Ih(x) Ifor 
all x E W. 

PROOF. We will assume that 1 < If II < 1 + p (otherwise, we can take 
g' = f, h' = 0) and divide the measure space W into three parts: 

Di = {x: g(x) > 0, h(x) > 0) U {x: g(x) < 0, h(x) < 0), 

2 = {x: g(x) 0 0, h(x) < 0,f(x) 6 0) 

U {x: g(x) < 0, h(x) > O,f(x) > 0), 
and 

D3 = {x: g(x) > 0, h(x) < O,f(x) > 0) 
u {x: g(x) < O, h(x) > O,f(x) < O). 

Let f/ D denote the restriction of f to D. It is clear that 

II/D1II = jIg/DIDI + jlh/D1jj, 

lIf/D211 = lIh/D2II-11 gID211, 
and 

JIf/D3I 1= -gID311-lh/D311 

Three cases arise: 
Case (i). If Ilh/D1It > p, we let h' = pllhxD, l'-hxD, and let g' =f- h'. 

Then it is easy to check that IIg'll < 1, llh'Il = p and jh'(x)l < lh(x)l for all 
x E W. 

Case (ii). If jlh/DIj < p and Ilh/D211 < 3p, then we have 

lIf/Dl l < p + II g/DIDI, lIf/D211 < 3P 
and 

ltf/D3l = =11gD311-l!h/D311 

Thus 1 < Ilfll < 1 + 4p - tlh/D311, which implies lIh/D311 < 4p and hence 
jjhjI < 8p. For this case, we let g' = g, h' = h. 

Case (iii). If ljh/DI( < p and tlh/D2II > 3p, then lIf/D2II > p. For 
otherwise, IIf/D2Jj < p implies that IIg/D211 > 2p. Thus lIf/D211 < p < 

g/D2jj - p and it follows that 

Ilfjj < (11 g/D1jj + p) + (II g/D211 - p) + 11g/D311 < 1, 

which contradicts our assumption that 1 < IIfll and proves the claim. We 
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define h' = PIIfXD2II - JXD2 and let g' = f - h'. Then for x E D2, Ih'(x)l < 

If(x)J < Ih(x)J and hence Jh'(x)l < Ih(x)J for all x E W. It is clear that 
11 g'll = 11 fi -1 P A 1. [2 

Let (02, :, y) be a a-finite measure space and let Y be a Banach space. A 
function f: 02 -* Y is called a Bochner measurable function if there exists a 
sequence of functions {f,) of the form E I yiXE, where y, E Y, {EL} is a 
measurable partition of 2 and {f } converges to F uniformly except on a zero 
set. Let L'(, Y) denote the space of bounded Bochner measurable functions 
from Q into Y with norm defined by the essential supremum norm. It is clear 
from the definition that the set of countable valued Bochner measurable 
functions is dense in L'(, Y). 

Let (2, :, y) be a a-finite measure space and let (W, '35, a) be a positive 
measure space. We use L'(0, L'(W)) to denote the subspace of 
L'(, L'(W)) consists of those functions f such that f(S2 \ N) is a weak 
precompact set for some zero set N in U. 

LEMMA 6.2. Let H E LI(Q2, L'(W)) and letH' E L'(0, L'(W)) such that 
for almost all w E 0, IH'(w)I < IH(w)I. Then H' E LO(Q2, L'(W)). 

PROOF. It is well known that for any subset K in L'(W, '35, a), K is weakly 
precompact if and only if it is bounded and for any decreasing sequence 
{En} C 6 such that n En = 0, {IfEf da) converges uniformly to zero for all 
f E K [2, p. 292, p. 430]. This is also equivalent to {lfI: f E K) is weakly 
precompact. If H E L'(2, L'(W)), then there exists a zero set N1 such that 
H(O \ N1) is weakly precompact. By hypothesis, IH'(w)I H H(w)I for X C Q 
\ N2 where N2 is a zero set, it follows from the above remark that H'(Q \ (NI 
U N2)) is also weakly precompact; therefore H' E L'(0, L1(W)). L 

THEOREM 6.3. L'(0, L1(W)) is a U-proximinal subspace of L??(Q, L1(W)). 

PROOF. Let X = L?(, L1(W)) and let M = L00(0, L1(W)), in view of 
Proposition 2.4(i), it suffices to show that 

(1 + p)s n (SD + MD) C S + 8pS(M) 
where SD and MD denote the dense subsets of functions with countable 
values in S and M, respectively. Let F E (1 + P)S n (SD + MD); we can 
write F = G + H with uIGII < 1, H E M and 

G(@) (y) = E 9. (Y) *XEn (, 
n=1 

H(w)(y) = h. (y) XE 
n= 1 

where w E 92, y E W and { E,n) is a measurable partition of E. By Lemma 5.1, 
for each n, there exist g' and hn such that II gnI ? 1 I I h,' < 8p, Ih'I < IhI and 
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g+ h=, g' + h". Define G', H' for X E Q,y E Wby 
00 

G '(@)(y) = E g;(Y) *XE (W) 
n = 1 

H'(w)(y) = E h.(y) XE,,(6)). 
n = I 

It follows that JIG'lI 6 1, JIH'fI S 8p and jH'(Q)j < jH(w)j, w E U. Hence 
H' E M (Lemma 6.2) and F = G' + H' E S + 8pS(M). CO 

Let (S, 2, ,) be a a-finite measure space and let X be a Banach space with 
separable dual. For any operator T: L1(Q) -X*, there exists a bounded 
Bochner measurable function F: S2 -* X* such that 

<T(f), x> = ff(w)<F(4), x> dM(w), x EX, 

and TI = IJEIlI0. Conversely, for any given bounded Bochner measurable 
function, we can define an integral operator T with F as kernel [2, p. 5061. We 
will identify L(L'(Q2), X*) and L??(Q, X*). Moreover, it is known that T is 
weakly compact if and only if the corresponding F is in L'j(f?, X*). 

THEOREM 6.4. Let (s1, ., ,u) be a a-finite measure space. Then K(L'(S), 1') is 
a U-proximinal subspace of L(L'(2), /1). 

PROOF. As is well known, weak sequential convergence and norm conver- 
gence are equivalent in 1. Hence the Eberlein-Smulian theorem [2, p. 430] 
implies that weak compactness and norm compactness in 1' are identical. 
Upon identifying K(L'(2), /1) with L*(&2, 1), the result follows from Propo- 
sition 5.3. O 

COROLLARY 6.5. K(l ', 1') is a U-proximinal subspace of L (1 , 11). 

To conclude this section, we remark that little is known about the 
proximinality of the subspace of compact operators on LP, I < p S oo, 
p # 2 or C(K). In [10] it was proved that if (i) E = VL(j) where ,u is a 
a-finite measure and F is uniformly convex or (ii) E* is uniformly convex and 
F = C(K) for some topological space X, then K(E, F) is a proximinal 
subspace in L(E, F). For operators between 1P and 1q, 1 S p, q < 0, the 
only remaining unanswered case is K(10, P), 1 < p < oo. 
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